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Abstract - A useful function for analyzing burn-in, developing maintenance
policies, or simply modeling lifetimes of equipment is the mean residual life
function. Other functions, such as the reliability or the failure rate
functions, are of course important also. Discrete data arises naturally in
various ways: from discretizing or grouping continuous data, devices operate by
"cycles" (e.g., a copier’s "cycle” is a copy, its "lifelength" the total number
of copies), etc. This paper develops a general approach to modeling discrete
bathtub and upside down bathtub mean residual life functions. Because the
approach allows parametric modeling of the mean residual life, maximum
likelihood estimation of models can be done. This will enable estimation of
such parametric models for complete discrete data, as well as right censored
discrete data. A simple, perhaps surprising, example is presented where the
mean residual life increases, then decreases; however, the hazard rate also
increases, drops suddenly at one cycle, then increases again. We discuss two

reasonable industrial explanations of such unusual behavior.
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N 1. INTRODUCTION

Modeling of the aging process of components and eqguipment can be performed

by’ o/
A

in various ways. One helpful tool for that modeling, as well as for analyzing

W
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burn-in or developing maintenance policies, is the mean residual life function.

-

Of course, other functions, such as the reliability or the failure rate

e functions, are important also.
PN
j« An introduction to MRL (this and other notations are defined in Section 2)
N -
'\-J“
J.

and its many applications are surveyed in Guess and Proschan [4]. See also

Bhattacharjee (2] and Gupta [6]. Kuo [9] presented a review in his Appendix 1
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on burn-in and MRL. Park [10] commented, "... the time at which a bathtub

5 ;"1
P

failure-rate is a minimum does not maximize the mean residual life. Contrary to

L4

O

popular belief, the mean residual life in the constant failure-rate region of a
bathtub failure-rate curve is not constant." Of course, this and other MRL
facts have important consequences for developing better burn-in policies.
Discrete data arises naturally in various situations: from discretizing
or grouping of continuous data, devices operate by "cycles," etc. For example,

a copier and its key components have as their "cycle" producing a copy. The

lifelength would be the total number of copies.

Recently, Ebrahimi [3] has proposed models for discrete DMRL and IMRL. He

also referenced earlier work on other types of discrete failure models for life

s

e testing data.

.

fﬁ Monotone aging models are very useful and important in reliability

E& 9 mpo

NV, applications. E.g., a Weibull with a shape parameter greater than 1 is a DMRL
®.

{i‘ (also an IFR) model - adverse aging. A Weibull with a shape parameter less than
s

- 1 (and greater than 0, of course) is an IMRL (also a DFR) model - beneficial
o
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aging. Recall IFR implies DMRL, while DFR implies IMRL. On the other hand,
models with more than one stage of aging are also important and useful in
reliability practice. E.g., the empirically observed bathtub failure rate model
has aging stages of infant mortality, useful life, and wearout. See Barlow &
Proschan (1, pp.55-56] for an example on a commercial airline engine'’s hot gas
generating subsystem. We use the same convention as Barlow & Proschan [1, p.6]
and others of using "increasing" for "nondecreasing" (constant is allowed) and
"decreasing" for "nonincreasing.”

Note that bathtub failure rate models are in the nonparametric class of
DIFR. The related class to DIFR is IDMRL. The lognormal, used for repair
times as well as lifetimes, is in the IDFR class. The analog to IDFR is DIMRL,
See Guess, Hollander & Proschan [5] for details on the IDMRL and DIMRL classes.

An upside down bathtub MRL is in the IDMRL class (human lifelength can be
modeled well by this class). A bathtub MRL is in the DIMRL class (repair time
models are included).

In this paper, we consider discrete versions of IDMRL and DIMRL. A
general approach to creating parametric and nonparametric models in these
classes is presented. Illustrative parametric examples are given. This example

includes as a special case one of Ebrahimi’s [3]) model by allowing n, = 0.

0
Because the approach allows parametric modeling, maximum likelihood
estimation of the models can be done. This estimation would be possible, not
only for complete discrete life data, but even for right censored discrete data.
Cf. Hall & Wellner ([7].
A simple, perhaps surprising, example is presented of IDMRL but not DIFR.

In fact, the failure rate and the MRL both increase over the set n=0,1,.. n.—1

0
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of cycles. At the turning point, NG from IMRL to DMRL the failure rate drops
~ suddenly and increases again. See Figures 1 and 2. We discuss two possible
'!: industrial explanations of such unusual behavior. Another simple, interesting
A example shows that even if a distribution is DIFR and IDMRL the turning points
in each can differ. See Section 3. -

2. NOTATION & NOMENCLATURE

Notation

T time to failure of a system (or component )

fi pmf{ti} = Pr{T=ti}

R, sf{ti} = Pr{TZti}

R(x) Sf{x} = Pr{T)x}

Ai discrete failure rate; fi/Ri

Xi complement of the discrete failure rate; Xi = 1-)
m, mean residual life; E[T—tilTZti]

MRL mean residual life

DMRL decreasing MRL

IMRL increasing MRL

IDMRL increasing initially then decreasing MRL

DIMRL decreasing initially then increasing MRL

IFR increasing failure rate

DFR decreasing failure rate

DIFR decreasing initially then increasing failure rate
IDFR increasing initially then decreasing failure rate
Nomenclature

IDMRL: A life distribution is called IDMRL at g if miSmi+1 for

ATl ‘..-.:r‘:.-,'.r T
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i=0,1,..., no-l and m, > m .1 for i=ng, n0+1,... . Note that the MRL is
maximized at time ng. the "turning point.”

DIRML: A life distribution is called DIMRL at ngy if m, >m 1 for

i+
i=0,l,...,n0—1 and m, < ™ for i=no,n0+1,... . Note that the MRL is minimized
at time Sy the "turning point."
3. A GENERAL APPROACH FOR CREATING IDMRL AND DIMRL MODELS
Consider again the definition of the MRL function
m = E(T—ti{thil. (2.1)

This can be rewritten as
= [ Rx)am, (2.2)
i
t.
i

Cf., for example, Kotz & Shanbhag [8]. When continuous data is grouped or when
it is only possible to observe failure that occurred in some interval, the ti's
could have a fractional part and/or be spaced unevenly. (E.g., during night
shifts and weekends, the inspection times for failure of a device can be less

frequent and sometimes uneven.) Allowing for this and assuming the ti's are

ordered (t0 < tl < ...), we can express (2.2) as
© tj+l
m, = [ L j R(x)dx ] /R,
i L i
j=1 "t,
]
= [.X.(tj+1 - Yy R(tj+l)] / By
j=1
- (jii (ti, =t )RJ+1J /R (2.3)

Recall in the above that R(x) is left continuous, not right continuous.

To allow for fractional values and uneven spacings, a person would want to

R AR L RSSOt
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use (2.3). On the other hand, for the case tj+1 - tj = 1, typical of devices

(e.g., copiers) with cycles, (2.3) has the simple form of

©
m = I

1 ; Rj+l / Ri (2.4)

i

A simple quick check of (2.4) is to take T degenera;e 0. (Note that Ro=l, Ri=0

for i>1; thus, mO=Rl/R0 +0+0+... =0. m, = 0 for i)l by convention).
Because we have been motivated primarily by devices with cycles and

previous authors have focused on the case of tj =3 for j =0,1,2,..., we

consider (2.4) for the rest of this paper. We also assume m, > 0 for

N
i i=0,1,2,... in all of the following.
Ezz The main tool in our method for producing IDMRL and DIRML models is the
-.- following theorem. See the Appendix for its proof.
- Theorem 1. A life distribution is IDMRL at n, if and only if there exist
a sequence {an}, a, > 0 for all n such that:
a, < a1 for n=0,1,...,n0—l } (2.5)
ay > A1 for n=n0,n0,+l,...
and Xn = an/(l+an+l) for n=0,1,2,... . (2.6)
> A similar result for a DIMRL at ng distribution is obtained by reversing
f:‘ the inequalities in (2.5). See the end of the Appendix for further comments.
:é; The proof in the Appendix demonstrates the helpful insight that a, =m.
gé; This makes building models even easier. In creating an IDMRL at ng model we
323 simply need to generate a sequence with a, > 0 satisfying (2.5) and (2.6). Note
;ZE that condition (2.5) is not difficult to meet. In the case of checking whether
:%{ a known distribution is IDMRL aﬁ Ny then (2.6) is also straightforward.
SES Condition (2.6) may seem rather awkward, however, to verify in the situaton of
9
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~£3 creating a new distributional model. Instead of verifying (2.6) directly, it
-
o
Ny suffices to determine that
@
"2
o L ;— =,
;:; n=0 “n
G
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a, > -1, n=0,1,... B

<
~
o)

I

£
7
7

and, of course, a > 0 for all n. When a sequence is increasing after some

Fod

E:E point, the above inequality is always met, while the equelity may or may not
FONT

o hold. When a sequence decreases anywhere, the inequality implies the decrease

can not be too quickly. When a sequence is decreasing after some time, the
equality will always hold. (Aside: it turns out these alternative conditions
EE? are necessary ones and can not be dropped. They will always be implicit in
b other conditions. Cf. Bhattacherjee [2] and Hall & Wellner [7].)
Although the increase (decrease) of the MRL might suggest the decrease
(increase) of the hazard rate of the life distribution, the following example
shows that the turning point for IDMRL does not necessarily agree with the

turning point from decreasing hazard rate to increasing hazard rate. Compare

also Example 2.

Example 1. Let a, = 1, a; = 3/2, a, = 4/3, ay = 1 and a, = 1/3 for n > 4.

-

Then it is easy to verify that the turning point from DFR to IFR occurs at n=3.

LAhAAS
et .

G
)
.

However, according to Theorem 1, the turning point for IDMRL occurs at n0=1.

[ 4

Ebrahimi [3] considered the following illustrative discrete DMRL model

with

it

a, c/(an+l), n=0,1,2,..., (0<c<l, «20). (2.7)

a1
o

It can be shown directly that a, =m < 1 for n=0,1,2,... for model (2.7). Note

that m, < 1 is a severe restriction, of course. A very slight, natural
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modification of the model, however, is possible. Let T be a random variable
i with distribution formed from the {an} of (2.7). The sequence {an} that
o generates the distribution of T = 6T for 650 is

a_ = 6%c/(an+6), n=0,1,2,..., (0c<l, a20,050). (2.8)

Note that E(T') = ©-E(T) and that for e=1 (2.8) reduces to (2.7). Also recall

To get a simple discrete IDMRL model, we let
2
a =8 c/(aln—nol + )
for n=0,1,2,..., (0<c<l, o0, 6>0,n020). An easy check of Theorem 1 shows the
above valid. This model includes both (2.7) and (2.8) as special cases. (The
case n0=0 is allowed.)
It is possible to simplify this IDMRL a, by letting ¢ = 1; thus,
2
a, = 6"/ (| n-ny| + ).

Note that lim a, = 0 is a natural condition on the MRL. Recall the failure
n-ow

rate of the Gamma life distribution, however, converges to a constant greater
than 0 as time t gets larger. 1I.e., asymptotically in time it behaves like an

exponential. If a situation suggests that lim a,=a> 0 is needed on the MRL,
n-ew

another possible modification is

a = 62/(a|n—n0| +8) +v, n=0,1,2,... , (2.9)
with the new parameter y > 0. If a reliability analyst wanted the essential
flexibility of (2.9), yet a simplified version then just set « = 1.
Example 2. Let o =1, ny = 40, 6 = 62.711168, and vy = 61.711168 in (2.9). To
get a mean (mo) of 100, we used this 8 and y. The MRL function, m. , is graphed

in Figure 1. Note that the graph is as expected IDMRL at ng = 40. Figure 2
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shows the graph of the failure rate function. Note that it is not, however,
DIFR. In fact, both the failure rate and the MRL strictly increase for n=0,
1,..., 39=n0—1. (Recall IFR everywhere implies DMRL everywhere.) At the
turning point (n0 = 40) from IMRL to DMRL the failure rate drcops suddenly to its
minimum and then increases again.

One possible explanation for the unusual behavior is that at the turning
point an overhaul is performed with new, state of the art parts. The higher
initial IFR is replaced by a lower IFR immediately upon completion of the
overhaul. The closer in time the device can get to the overhaul time and the
significantly lower failure rate, the larger the MRL grows. This explains the
initial IMRL part, even though the failure rate is increasing. In the tail
(ngno = 40) we have IFR, thus DMRL.

Another explanation is to consider a stress screening program of parts or
devices with IFR. In the initial time period the stressful screen results in a
much higher than normal IFR. This is followed upon completion by a sudden drop
to a significantly lower IFR. The closer we get to the time of exiting the
screen, the higher the MRL gets, i.e., we have IMRL initially. After exiting to
the lower IFR we have DMRL.

Figures 1 and 2 also show the importance of graphing both the MRL and the
failure rate to understand data better. It will not necessarily be obvious
looking at one graph what the other does.

4. CONCLUSIONS
For cost analysis, burn-in, and/or modeling discrete life data, the MRL is

a useful tool. We have provided a general approach for creating IDMRL (e.g.,

useful for lifetimes) and DIMRL (e.g., useful for repair times) models.
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Given a parametric version of one of these models, it is possible using

(2.6) to derive the likelihoed for the data. See Ebrahimi [3] and his

references. Cf. Hall and Wellner [7]. With the likelihood it becomes possible

to do maximum likelihood estimation on complete discrete life data and even on

right (and/or left) censored data.

An advantage to parametrizing directly the MRL as presented in this paper
is that even given the failure rate or the probability mass function,

calculation of the MRL could require doing an infinite summation numerically.

Cf. (2.4) and (A.1l).

It should be noted again that minimizing the failure rate does not

guarantee maximizing the MRL. Which measure of reliability does a person need

"maximized" is the key question. Although for many situations minimizing the

failure rate is best, for many others maximizing the MRL would be preferable
because of reducing the average cost, for instance. (Cf. Kuo {9] and Guess and

Proschan {4]). Our approach to constructing discrete IDMRL models contributes

there also.

We presented illustrative examples and models to demostrate key advantages
of thinking directly in terms of discrete MRL models. The graphs in Figures 1
and 2 showed that merely graphing the failure rate (MRL) alone will not
necessarily suggest the actual behavior of the MRL (failure rate). Both are
needed.
APPENDIX
This appendix provides the proof of Theorem 1. Salvia and Bollinger [11]

gave representation results which we use below to obtain

f0 = AO =1 - aO/(1+al)

»
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NN £,o=X I X, =1[l-a,/(l+a. ,)] N [a./(l+a. )]
:: i i 3=0 j i i+l j=0 3 j+1
) for i = 1,2,

l:\-:
\i}\_:- and

.\.4‘\.’
N R, =1
4 ;.-' 0

v i-1 _ i-1

A R.= I A, = @1 [a./(l+a. ,)]

i . . +1
- =0 =0 T
SRS

AN for i=1,2,...
.-‘

. where {an} is a sequence defined in Theorem 1.
d ".;, To prove Theorem 1, we need the following lemma from Ebrahimi [3].
N

'D

o

!- Lemma 1. Let {an} and {bn} be two converging positive sequences and let ¢ > 0.
'f::‘_' If an/(c+an+1) = bn/(c+bn+l) for all n, then a, = bn for all n.
-_:i’_: Proof. The proof of the lemma involves essentially case I: a = b # 0 and case
_, II: a=b =0, where lim a = a and lim b = b.

A e 0 n-w
‘_ Proof of Theorem 1. First assume that the life distribution is IDMRL at n,-
P~

Recall we have assumed m > 0 for all n. Note that

) -]
N ©
T m = ¢ R. ./R = I R,/R

o Rogen WM gy R
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2;;5 °  i-1

Py = I It (R /R)

e i=n+l j=n 3+1773
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2 ° -l _

oo = I n )‘j (A.1)
."",:{ i=n+l je=n
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N Xn (1 +m ,) holds for any MRL, m .
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Thus, we express

Ay =m/(L+mo ) (A.2)
By definition of IDMRL at n, the sequence {an} defined by a, = m satisfies
(2.5). From (A.2), {an} also fulfills (2.6). Note that a,=m >0 for all n.
This completes the first implication of Theorem 1.
To prove the implication in the other direction, we assume the existence
of a sequence {an} satisfying (2.5), (2.6) and a, > 0 for all n. By a,
decreasing for n > n, and a, > 0, lim a,=a > 0 exists.
n->e«
Now consider
© i-]
m = z n . (A.3)
i=n+l j=n J

© ji-l+n
= L 0 X

i=1 j=n 3
which follows directly from the representation of Xj in (2.6), the definition
of m , (A.1), and readjusting the summation index. Note that

lim Xn = lim an/(1+an+l) = a/(l+a). (A.4)
n->e n-w

By (A.4) and the ratio test, m, converges, and hence, is well defined. Consider

next

limm_/(1+m )
noxo n n+1 oo

lim [Xn(1+mn+l)]/(l+mn+l)

(A.5)

lim Xn = a/(1l+a)

n-e

Using limiting operations, we have
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5 (i)
i=1 j=1 \l*a

By Xn = an/(1+an+l) = mn/(1+mn+1) and the results above, we apply Lemma 1 to see
a, =m, for all n. By property (2.5) of {an}, the sequence {mh} satisfies the
condition for IDMRL at Ny, which we wanted to show.

For the DIMRL at ng version of Theorem 1 the proof assuming first DIMRL
(no) follows similarly. To show the implication in the other direction,
however, requires the additional condition that the sequence {an} is bounded for
these proof techniques. Watson & Wells [12] considered lognormal’s unbounded
MRL. We allow for unbounded {an} and MRL by our comments and conditions on page
7. Cf. also Bhattacharjee [2] and Hall & Wellner [7].
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5 Captions

W

“ Figure 1: Mean residual life function
.

7o Figure 2: Failure rate function
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